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Abstract—We propose an approach to predict accuracy for
three-dimensional reconstruction and camera pose using a
generic RGB-D camera on a robotic platform. We initially create
a ground truth of 3D points and camera poses using a set
of smart markers that we specifically devised and constructed
for our approach. Then, we compute actual errors and their
accuracy during the motion of our mobile robotic platform. A
modeling of the error is then provided, which is used as input to
a deep multi-layer perceptron in order to estimate accuracy as a
function of the camera’s distance, velocity, and vibration of the
vision system. The network outputs are the root mean squared
errors for the 3D reconstruction and the relative pose errors for
the camera. Experimental results show that this approach has
a prediction accuracy of ±1% for the 3D reconstruction and
±2.5% for camera poses, which shows a better performance in
comparison with state-of-the-art methods.

Index Terms—Errors Prediction, Camera Positioning, 3D Re-
construction, RGB-D Cameras

I. INTRODUCTION

Two known problems that appear in everyday vision tasks
are the scene 3D reconstruction [1]–[3] and the estimation of
camera pose [4], [5]. These problems are generally tackled by
using RGB-D devices with technologies as Structured Light
(SL), e.g., MS Kinect v1, Time of Light (ToF), e.g., MS
Kinect v2, or Coded Light (CL), e.g, Intel RealSenseTM

Stereo depth technology, or even with purely stereoscopic
vision devices as the Minoru [6], ZED from Stereolabs [7]
or BumbleBee from Point Gray [8]. Determination of position
and orientation from monocular cameras has also been done
in the literature, mainly for simultaneous localization and
mapping (SLAM) using robots [9]. Despite being very useful,
these low-cost RGB-D cameras are not highly accurate due to
various internal and external factors that may cause errors in
their measurements. Internal factors cause systematic errors
that depend on the camera hardware, such as lenses with
high distortion, an inadequate arrangement of cameras, and
the use of sensors with low resolution. The external factors
are those that affect the camera’s performance independent of
its construction characteristics, causing random errors. Some
external factors are velocity, vibrations, lighting, and others.
In this work we are most interested in providing a way to
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measuring, modeling, and estimating the accuracy of the error
caused by these external factors.

From the methods found in the literature to quantify errors
in RGB-D camera measurements, there are a few works that
include the analysis of the systematic errors in stereo 3D
reconstruction in situations where the camera is static [7],
[10]. On the same direction of this paper, there are works
that model the RGB-D measurement errors due to the effects
of vibration camera internal factors [11], [12]. Nevertheless,
these works and other works that will be mentioned further
in Section III do not make a joint analysis of the effects
that camera displacement, velocity, and vibrations have on the
measurements.

Hence, errors caused by external factors are rarely con-
sidered in robotic vision applications because of the lack of
a single method to quantify it, mainly due to the limited
literature. Thus, in this paper, we propose a methodology that
includes a complete pipeline with an easy of implementation
technique to measure, model, and predict errors accuracy in 3D
camera pose and 3D reconstruction using distance, velocity,
and vibration as input. Our contribution is a novel approach
in regard to the literature, providing a useful way to estimate
efficacy of methods and devices used in tasks that here are
basis for robotic vision. As well, there are applications as
virtual reality and others involving visual mapping that need
motion and position estimation from RGB-D cameras.
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Fig. 1: Stages of the proposed method to measure, model and
predict the 3D reconstruction and camera pose errors.

II. THE BASIC METHODOLOGY

We follow a general methodology for measuring, modeling,
and predicting error accuracy in 3D reconstruction and camera
pose that comprises three stages as shown in Figure 1. Basi-
cally, we start with the creation of the ground truth, which



is implemented in two sub-stages, mapping to get accurate
3D points (commonly called point cloud) and localization to
get actual camera poses from visual odometry. The mapping
and localization are normally implemented using a graph
optimization method. To compute the error (or difference)
between two point clouds, a common approach is to apply
a registration method [13], [14]. Usually, the result is a rigid
transformation T that is composed by a rotation matrix R
and a translation vector t that align the source cloud in the
reference system of the target cloud. The rigid transformation
T can be computed by using SVD [15], quaternions [16], or
dual quaternions [17].

The second stage of our approach is the acquisition of an
errors dataset using an RGB-D camera and a mobile robot.
In this paper we analyze the camera random errors caused by
vibrations, distance, and velocity, and quantify its accuracy
using the root mean square error (RMSE) metric for 3D
reconstruction errors [10] and the relative pose error (RPE)
metric for camera pose errors [18].

Finally, in the third stage, recorded datasets are used to
evaluate a multi-Layer perceptrons (MLP) algorithm to model
and predict the 3D reconstruction and camera pose errors in
function of the camera’s distance, velocity, and vibration.

Thus, as stated above, the core of the problems is how to
determine the RMSE in 3D reconstruction and also the (RGB-
D) camera RPE, seen next.

A. Three-Dimensional Reconstruction Error

Here, the problem is to get the three-dimensional recon-
struction RMSE in the frame f̂ given that an RGB-D camera
is moving at velocity s̃, with vibration ṽ, at a distance z̃
from origin position G(0, 0, 0). Also, to determine if it is
possible obtaining two sets of points referenced to the same
coordinate system, one measured as ℘̂i (from artificial markers
corners detection), and another estimated as ℘i (ground truth).
Consider that in frame f̂ one point p̂ is visualized (with 3D
spatial errors due to systematic and random errors). Also
consider that the world coordinates (X̂, Ŷ, Ẑ) of the point
are known. That is, p is an error-free version of p̂, with
coordinates in the world (X,Y,Z). As such, if i = 1, ..,n
points are detected in the image f̂ , for a given point p̂i, the
magnitude of its location error at the reference frame can be
simply defined by the Euclidean distance ei between points pi

and p̂i as:

ei =
(
e2i,x + e2i,y + e2i,z

)1/2
(1)

where ei,x = Xi − X̂i, ei,y = Yi − Ŷi, and ei,z = Zi − Ẑi.
For all of the detected points the analysis mentioned above

can be extended to use the points sets, ℘̂f̂ = [p̂1, ...., p̂n] and
℘f̂ = [p1, ....,pn]. Hence, the spatial localization errors for the
points in the frame f̂ can be computed using the root mean
square error (RMSE) as given by Eq. 2 [10].
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B. Camera Pose Error

Given two camera poses (position and orientation), one
measured Cf̂ referenced to a global coordinate system
G(0, 0, 0), and its ground truth C∗

f̂
, the problem here is to

determine what is the relative error between these two poses
if the camera is moving (e.g., within an environment with
artificial markers or RTK-GPS) at a distance z̃ with a velocity s̃
and with a vibration ṽ. The relative pose error (RPE), denoted
here by the matrix R̂f̂ , between the poses C∗

f̂
and Cf̂ , can be

computed using Eq. 3, where ∆ is the interval between the
poses (number of frames) [18].

R̂f̂ =
[
R̂f̂,x, R̂f̂,y, R̂f̂,z

]
=

(
C∗−1

f̂
C∗

f̂+∆

)−1 (
C−1

f̂
Cf̂+∆

)
(3)

If the RPE between two poses R̂f̂ is computed using only
the translation component (trans) of R̂f̂ , Eq. 3 is simplified
to Eq. 4 [19].

RPEf̂,x = R̂f̂,x

RPEf̂,y = R̂f̂,y

RPEf̂,z = R̂f̂,z

RPEf̂ = ∥trans(R̂f̂)∥

(4)

If the camera moves within an environment with artificial
markers for some time and captures f̂ frames, it is possible to
collect two datasets, one of the three-dimensional errors and
another of the camera pose errors. Finally, using the collected
datasets and regression techniques, it would be possible to
obtain the models of Eq. 5 and 6. These models can predict
RGB-D measurements errors as a function of distance z̃,
velocity s̃ and vibration ṽ.

NRMSEf̂
= F(z̃, s̃, ṽ) (5)

NRPEf̂
= F(z̃, s̃, ṽ) (6)

III. RELATED WORKS

We consider two types of methods, when the camera is
static and when it is in motion. These methods can be
subdivided further into two types of approaches: analytical and
experimental. Analytical approaches analyze only the effects
of systematic errors due to their mathematical complexity. In
contrast, experimental methods allow the analysis of the effects
of systematic and random errors.



A. Static Camera

RGB-D cameras can be statically analyzed, for example,
when one is expressing the stereo uncertainty as a function
of the 3D points’ location in the scene [20]. This can be
summarized as determining when the stereo uncertainty value
reaches the lowest value at the center of the image plane, and
decreases as the baseline becomes larger. Another work found
addresses the determination of parameters of a stereo system
to minimize 3D position errors (in the three axes of the world
coordinate system) [21]. Stereo error models considering non-
ideal triangulation and an optimal, and finite baseline, are
presented. The error propagation from the image coordinate
system to the camera system and the world coordinate system
is analyzed. Jin et al. [22] show an analytical and numerical
analysis of the disparity and 3D measures. The result is a
quadratic model for reconstruction error based on the disparity
error produced by the radial distortion of the camera lenses.

An experimental work [23] proposes a method for compar-
ison of RGB-D camera resolution and human perception. The
authors figured out that the 3D accuracy is more influenced
by focal length variations than by a variable baseline. Then,
the accuracy of the camera is examined, by analyzing two
terms, absolute value and 3D resolution. The investigation of
the error due to the distortion parameters, camera calibration
of internal and external parameters, and their effects on 3D
reconstruction accuracy is also found in the literature [24].
The authors determine that distortion and internal parameters
have a minimal impact while the external parameters directly
determine 3D reconstruction accuracy by affecting baseline
distance and the angle between cameras. In this direction,
Sankowski et al. [25] have developed a method to measure the
uncertainty of the 3D position of a reconstructed point using
an RGB-D camera. The authors show that the total absolute
errors of the x and y coordinates of the 3D point have similar
values and that these errors are less than the error of the z
coordinate.

B. Dynamic Camera

A theoretical analysis of errors of an RGB-D camera
mounted on a moving robot [26] shows that the distance
error and the header angle increase as the baseline decreases.
An experimental work [27] measures the object’s 3D location
accuracy with an RGB-D camera onboard a boat. Appropriate
roll and pitch angles are estimated for eliminating the effects
of sudden movements and obtain the relative directions of the
camera to evaluate the 3D position of the objects detected in
the scene. Actual roll and pitch angles are computed using
the horizon data, from which camera rotations are estimated,
due to vibration, with two pairs of image coordinates and 3D
locations of the landmarks. Okazaki et al. [11] propose an error
model for stereo measurements (in pixels and disparity), based
on the fact that when the camera vibrates, a point in the stereo
pair undergoes displacement in the image coordinates and
consequently in the world (on the horizontal axis). The authors
determine empirically that the error in the pixel position of
a point in the stereo pair has a uniform distribution. The

disparity error distribution is of the triangular type. Later on,
Okazaki [28] expands the analysis for the horizontal and depth
axis.

The representation of error as a function of 3D point motion
parameters, such as amplitude, frequency, and phase is also
found in the literature [29]. To do this, a calibrated and non-
synchronized RGB-D camera takes photos when a spatial point
does a simple harmonic motion or sinusoidal movements.
Then, the error between the actual and reconstructed z co-
ordinate is computed. The authors determine that the error
increases when the amplitude and frequency of the movements
are large.

After extensively reviewing the related works, we noticed
the inexistence of a work that proposes a method to measure,
model, and predict the RGB-D measurements in the function
of their distance, velocity, and taking into account vibration
problems caused by motion of the robot. Thus, the solution
described next is an important contribution.

IV. MEASURING, MODELING AND PREDICTING ERRORS

We need to construct a ground truth for 3D points and
camera poses, which is done using a robotic platform coupled
with high-precision measurement equipment. The reconstruc-
tion and pose errors are measured using this set of actual 3D
points.

A. Capturing the Ground Truth Dataset
Most of the methods reported in the literature for creating

our ground truth are very costly, and their use is limited
to specific workspaces. We use our previous approach that
introduces an accurate and low-cost method to create a ground
truth using smart markers (SM) [18]. An SM consists of a
square planar fiducial marker and a positional measurement
unit (PMS). With a set of markers in the environment, the SM
mapping and localization implementations return a marker
map with actual 3D points (from markers corners) and the
camera poses. Previous results demonstrated that the method
decreases the RPE by ≈ 85% in the mapping stage and
the absolute trajectory error (ATE) in ≈ 50% in the camera
localization stage in comparison with other methods [18].
Also, previous results support the claim that it is possible to
use low-cost methods for ground-truth generation.

Our data acquisition platform is based on a four-wheel
Pioneer 3-AT robot, an onboard computer Jetson AGX Xavier,
a Stereolabs ZED camera, a vibration analyzer PCE-VDL-16I,
and a laser distance meter GLM80. All devices are calibrated
with the measures referenced to the left camera coordinate
system, as shown in Figure 2. Communication between the
onboard computer and the robot is made using the Aria
library [18]. It also allows reading and controlling all sensors
to capture RGB-D measurements at variable robot velocities
from 0.1 to 0.7 m/sec. Additionally, the onboard computer
drives the detection of the marker using the ArUco library.

B. Measuring Three-Dimensional Reconstruction Error
We compute the reconstruction error using a set of actual

3D points obtained from an SM set. Figure 3a shows how the



Fig. 2: Data acquisition platform with illustration of the used
reference frame (coordinate system). The x–axis is to the right
of the robot (red arrow), y is pointing down (green arrow) and
z is to the front (forward) of the robot (a right-hand coordinate
system is used).

(a)

(b)

Fig. 3: RMSEf̂ and RPEf̂ computing process. (a) Capture
actual pi (green points) and measured points p̂

′

i (light-blue).
Obtain the ground truth camera pose C∗

f̂
(green dotted arc)

and measured pose Cf̂ (black dotted arc). (b) Computation
of error RMSEf̂ in all 3D points in the frame f̂ , using the
actual ℘̂f̂ and measured sets. ℘̂f̂ is the transformed version of
℘̂

′

f̂
. Computation of the RPEf̂ and their components.

stereo camera is moving and captures a frame f̂ (with the left
camera). All visible markers are detected, and the coordinates
(ul, vl) of their four points are determined using the ArUco
library. Then, with these 2D coordinates, the corresponding
3D coordinates for each point pi is searched in an optimized
marker map.

Thus, in frame f̂ the measured 3D points p̂
′

i are obtained
using the markers detection and the depth map generated by
the stereo camera. All actual 3D points of the set ℘f̂ are
referenced to G(0, 0, 0), while all measured points of the set
℘̂

′

f̂
are referenced to the camera coordinate system. We use

Eq. 7 to transform all measured points to G(0, 0, 0). In this

equation the camera pose C∗
f̂

is obtained from the camera
localization ground truth data. The transformed measured
points set is denoted as ℘̂f̂ .

℘̂f̂ = C∗
f̂
℘̂

′

f̂
(7)

As shown in Figure 3b, once the actual and measured sets
of 3D points are in the same coordinate system, the point error
is computed using Eq. 1. Finally all individual errors ei are
put together in the metric RMSEf̂ using Eq. 2.

C. Measuring Camera Relative Positioning Error

The camera RPE is the difference between the ground truth
pose and the measured pose. In Figure 3a the ground truth for
the camera pose C∗

f̂
is obtained from a camera localization

process described in Section IV-A, while that the measured
pose C

′

f̂
is get from ZED SDK. The measured Cf̂ is the

camera pose in the markers map coordinate system, which
is the result of applying the transformation C∗

1 to C
′

f̂
as given

by Eq. 8. This transformation is the first camera pose C∗
1 given

by the ground truth. Applying this transformation is necessary
because the measured pose initially is in the camera coordinate
system.

Cf̂ = C∗
1C

′

f̂
(8)

Once the measured and ground truth camera poses are in the
same coordinate system, we compute the camera RPE using
Eq. 4 with ∆ = 1 and only for consecutive poses (not all
poses pairs are used).

V. EXPERIMENTAL EVALUATION

We recorded data for six trajectories for robot velocities
from 0.1 to 0.6 m/s using the data acquisition platform. The
scene is a flat hall with marble floor and artificial light.
The recorded data are grouped in four datasets: RMSE-
Model/hall, RPE-Model/hall, used for modeling and RMSE-
Eval/hall, RPE-Eval/hall for evaluation. The dataset used for
modeling has 90,000 rows while the dataset for evaluation has
67,500 rows. All datasets have twelve columns: the distance
(z̃x, z̃y, z̃z), velocity (s̃x, s̃y, s̃z) and vibration (ṽx, ṽy, ṽz),
in each axis. For RGB-D error modeling, we start testing
with Machine and Deep Learning multivariate regression al-
gorithms. We provide accuracy for the errors predictions using
the best methods.

A. Modeling Errors

We apply the ML and DL algorithms on RMSE-Model/hall
and RPE-Model/hall datasets, evaluating Linear Regres-
sion (LR), Lasso Regression (LASSO), Elastic Net (EN),
K-Neighbors Regressor (KNNR), Decision Tree Regressor
(DTR), Support Vector Regressor (SVR), Ada Boost Regres-
sor (ABR), Gradient Boosting Regressor (GBMR), Random
Forest Regressor (RFR), Extra Trees Regressor (ETR), and
also the use of a Multi-Layer Perceptron (MLP). Using data
exploration, we could identify several relevant features of
RMSE-Model/hall and RPE-Model/hall such as: a) RMSE



increases with vibration increase; b) RMSE decreases with
distance increase; c) RMSE decreases with velocity increase;
d) RPE increases with velocity increase; e) RPE increases
with vibration increase; f) and RPE decreases with distance
increase.

We provide a thoroughly cross-validation analysis for the
regression methods with the scikit-learn library. The data
in RMSE-Model/hall and RPE-Model/hall are split into two
parts, 75% for training and 25% for validation. After cross-
validation, we found that the best ML algorithms to model
the 3D reconstruction RMSE and the camera RPE are S-SVR
and LR, respectively. The accuracy of S-SVR is ±0.31 m,
i.e., 36% of the 0.87 m that is the mean of all data. The LR
accuracy is ±8.2e-04 m/frame, i.e., 43% of the mean 0.0019
m/frame. This value means that the ML algorithms did not do
a good prediction job. Thus, to improve the ML results, we
experiment with the MLP neural network. First, we define the
network structure through varying the number of neurons in
the first hidden layer, adding new hidden layers and varying
the number of neurons, and by varying the training epochs
and using data transformations. After these tests, the result is
two MLP neural networks NRMSEX,Y,Z

and NRPEx,y,z
for

the multivariate regression of the 3D reconstruction and the
camera positioning errors, respectively.

B. Error Predictions Evaluation

The columns z̃, s̃ and ṽ of RMSE-Eval/hall and RPE-
Eval/hall are the new inputs of the neural network NRMSEf̂

and NRPEf̂
, respectively. The predictions are reported in

Table I and Table II. Analyzing Table I and II, it can be seen
that the 3D reconstruction error is approximately ±0.023 m,
i.e. approximately ±1% of the nominal value. The error in
the prediction of new camera RPE values is approximately
±2.66e-05 m/frame, i.e. approximately ±2.5% of the nominal
value.

C. Practical Applications

To show the usefulness of our method, we start presenting a
point cloud correction processing. Specifically, only the spatial
positioning (only translation) of the 3D points is corrected
by adding the reconstruction errors predicted by the NRMSEf̂

network. Figure 4a show the cloud before and after correction.
It can be seen how each point position is relocated to a position
nearby the control points (green points).

A second application on camera odometry (only translation)
correction is devised, with a random camera trajectory with
their respective velocity and vibration. Figure 4b shows the
camera trajectory in each axis (light blue lines) and its
correction (light green line) by adding the RPE obtained by
NRPEf̂

network predictions.

VI. CONCLUSIONS

Our work proposal includes a versatile framework for
estimating error accuracy in 3D camera pose determination
and 3D reconstruction from data provided by RGB-D sensors
coupled to mobile robotic platforms. The approach is based

on a new methodology for determining ground truth, from
which the use of neural networks is utilized to approximate the
predictions when the robot is operating in its environment. In
general, the results in errors prediction confirm our hypothesis
that it is possible to model the errors in RGB-D camera
measurements as a function of other magnitudes such as
distance, velocity, and vibration; and above all, it opens the
door to new models based on other physical magnitudes.

The training of NRMSEf̂
and NRPEf̂

, was carried out using
data captured within a stage with a flat marble floor. The
vibration level of the camera is related to the floor surface, i.e.,
the neural networks presented could give wrong predictions
when there is a vibration magnitude outside the levels used for
their training. Thus, we plan to investigate how our method
behaves on the presence of larger vibrations (i.e. uneven
surfaces).
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Gonçalves, “A Versatile Method for Depth Data Error Estimation in
RGB-D Sensors,” Sensors, vol. 18, no. 9, 2018.

[11] S. Okazaki, T. Tanaka, S. Kaneko, H. Takauji, N. Kochi, and M. Yamada,
“Modeling stereo measurement error by considering camera vibration,”
in 2010 Int. Symp. on Optomechatronic Technologies, Oct 2010, pp. 1–6.

[12] A. Lavatelli and E. Zappa, “Modeling uncertainty for a vision system
applied to vibration measurements,” IEEE Transactions on Instrumen-
tation and Measurement, vol. 65, no. 8, pp. 1818–1826, 2016.

[13] P. J. Besl and N. D. McKay, “A method for registration of 3-D
shapes,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 14, no. 2, pp. 239–256, Feb 1992.



TABLE I: NRMSEf̂
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x y z x y z x y z x y z x y z x y z
-0.45 0.08 11.29 0.4 0.4 0.1 -0.02 -1.03 -1.95e-02 0.11 0.17 0.79 0.11 0.17 0.80 2.58e-04 1.07e-03 4.07e-03
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-0.44 0.13 11.54 0.2 0.4 0.2 -0.04 -1.03 -1.17e-02 0.13 0.17 0.59 0.13 0.17 0.59 8.71e-04 8.90e-04 6.88e-03
-0.42 0.14 11.88 0.6 0.2 0.3 -0.04 -1.02 -1.17e-02 0.08 0.22 0.66 0.08 0.22 0.66 3.86e-04 1.41e-03 6.62e-03
-0.33 0.15 12.91 0.4 0.1 0.1 -0.02 -1.03 -1.17e-02 0.11 0.22 0.74 0.11 0.22 0.75 2.03e-04 1.10e-03 5.94e-03
-0.28 0.16 12.92 0.1 0.1 0.1 -0.03 -1.03 -7.80e-03 0.15 0.22 0.74 0.15 0.22 0.74 2.68e-04 1.39e-03 1.78e-03

TABLE II: NRPEf̂
predictions for some samples of the dataset RPE-Eval/hall.

Distance [m] Velocity [m/s] Vibration [g] RPEf̂ Nominal [m/frame] RPEf̂ Predicted [m/frame] Prediction Error [m/frame]
x y z x y z x y z x y z x y z x y z
-0.95 0.16 14.13 0.3 0.2 0.2 -0.04 -1.02 3.90e-03 4.59e-04 4.05e-04 1.99e-03 3.74e-04 3.62e-04 1.85e-03 8.47e-05 4.33e-05 1.40e-04
-0.95 0.16 14.26 0.4 0.2 0.1 -0.03 -1.03 -1.56e-02 5.27e-04 4.01e-04 1.85e-03 4.42e-04 4.23e-04 1.70e-03 8.51e-05 2.22e-05 1.49e-04
-0.72 0.16 14.40 0.3 0.2 0.2 -0.03 -1.02 -1.95e-02 4.75e-04 4.11e-04 1.96e-03 3.90e-04 3.90e-04 1.75e-03 8.55e-05 2.05e-05 2.13e-04
-0.43 0.17 14.43 0.1 0.2 0.4 -0.03 -1.04 -3.90e-03 4.45e-04 5.28e-04 2.08e-03 3.72e-04 5.12e-04 2.24e-03 7.25e-05 1.62e-05 1.60e-04
-0.31 0.18 14.73 0.1 0.2 0.2 -0.03 -1.04 -1.56e-02 4.53e-04 4.82e-04 1.65e-03 4.14e-04 5.10e-04 1.81e-03 3.86e-05 2.82e-05 1.60e-04
-0.26 0.19 14.74 0.1 0.2 0.3 -0.04 -1.03 -2.73e-02 5.49e-04 5.64e-04 2.38e-03 4.62e-04 5.26e-04 2.17e-03 8.64e-05 3.75e-05 2.15e-04
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Fig. 4: (a) Point cloud correction. (b) Camera odometry (translation) correction.
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